Simplify: (2x-1)^3=-125 Tiger Algebra Solver

Admin

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     (2*x-1)^3-(-125)=0 

Step by step solution :

Step  1  :

 1.1     Evaluate :  (2x-1)3   =    8x3-12x2+6x-1 

Step  2  :

Pulling out like terms :

 2.1     Pull out like factors :

   8x3 - 12x2 + 6x + 124  = 

  2 • (4x3 - 6x2 + 3x + 62) 

Checking for a perfect cube :

 2.2    4x3 - 6x2 + 3x + 62  is not a perfect cube

Trying to factor by pulling out :

 2.3      Factoring:  4x3 - 6x2 + 3x + 62 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  3x + 62 
Group 2:  -6x2 + 4x3 

Pull out from each group separately :

Group 1:   (3x + 62) • (1)
Group 2:   (2x - 3) • (2x2)

Bad news !! Factoring by pulling out fails : The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.4    Find roots (zeroes) of :       F(x) = 4x3 - 6x2 + 3x + 62
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  62. The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,31 ,62 Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      49.00   
     -1     2      -0.50      58.50   
     -1     4      -0.25      60.81   
     -2     1      -2.00      0.00    x + 2 
     -31     1     -31.00     -124961.00   
     -31     2     -15.50     -16321.50   
     -31     4      -7.75     -2183.56   
     -62     1     -62.00     -976500.00   
     1     1      1.00      63.00   
     1     2      0.50      62.50   
     1     4      0.25      62.44   
     2     1      2.00      76.00   
     31     1      31.00     113553.00   
     31     2      15.50     13562.50   
     31     4      7.75      1586.81   
     62     1      62.00     930496.00   

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   4x3 - 6x2 + 3x + 62 
can be divided with  x + 2 

Polynomial Long Division :

 2.5    Polynomial Long Division
Dividing :  4x3 - 6x2 + 3x + 62 
                              ("Dividend")
By         :    x + 2    ("Divisor")

dividend  4x3 - 6x2 + 3x + 62 
- divisor * 4x2   4x3 + 8x2     
remainder  - 14x2 + 3x + 62 
- divisor * -14x1   - 14x2 - 28x   
remainder      31x + 62 
- divisor * 31x0       31x + 62 
remainder       0

Quotient :  4x2-14x+31  Remainder:  0 

Trying to factor by splitting the middle term

 2.6     Factoring  4x2-14x+31 

The first term is,  4x2  its coefficient is  4 .
The middle term is,  -14x  its coefficient is  -14 .
The last term, "the constant", is  +31 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 31 = 124 

Step-2 : Find two factors of  124  whose sum equals the coefficient of the middle term, which is   -14 .

     -124   +   -1   =   -125
     -62   +   -2   =   -64
     -31   +   -4   =   -35
     -4   +   -31   =   -35
     -2   +   -62   =   -64
     -1   +   -124   =   -125
     1   +   124   =   125
     2   +   62   =   64
     4   +   31   =   35
     31   +   4   =   35
     62   +   2   =   64
     124   +   1   =   125


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

  2 • (4x2 - 14x + 31) • (x + 2)  = 0 

Step  3  :

Theory - Roots of a product :

 3.1    A product of several terms equals zero. When a product of two or more terms equals zero, then at least one of the terms must be zero. We shall now solve each term = 0 separately In other words, we are going to solve as many equations as there are terms in the product Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

 3.2      Solve :    2   =  0

This equation has no solution.
A a non-zero constant never equals zero.

Parabola, Finding the Vertex :

 3.3      Find the Vertex of   y = 4x2-14x+31Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 4 , is positive (greater than zero). Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   1.7500  Plugging into the parabola formula   1.7500  for  x  we can calculate the  y -coordinate : 
 
 y = 4.0 * 1.75 * 1.75 - 14.0 * 1.75 + 31.0
or   y = 18.750

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 4x2-14x+31
Axis of Symmetry (dashed)  {x}={ 1.75} 
Vertex at  {x,y} = { 1.75,18.75} 
Function has no real roots

Solve Quadratic Equation by Completing The Square

 3.4     Solving   4x2-14x+31 = 0 by Completing The Square .Divide both sides of the equation by  4  to have 1 as the coefficient of the first term :
   x2-(7/2)x+(31/4) = 0

Subtract  31/4  from both side of the equation :
   x2-(7/2)x = -31/4

Now the clever bit: Take the coefficient of  x , which is  7/2 , divide by two, giving  7/4 , and finally square it giving  49/16 

Add  49/16  to both sides of the equation :
  On the right hand side we have :
   -31/4  +  49/16   The common denominator of the two fractions is  16   Adding  (-124/16)+(49/16)  gives  -75/16 
  So adding to both sides we finally get :
   x2-(7/2)x+(49/16) = -75/16

Adding  49/16  has completed the left hand side into a perfect square :
   x2-(7/2)x+(49/16)  =
   (x-(7/4)) • (x-(7/4))  =
  (x-(7/4))2
Things which are equal to the same thing are also equal to one another. Since
   x2-(7/2)x+(49/16) = -75/16 and
   x2-(7/2)x+(49/16) = (x-(7/4))2
then, according to the law of transitivity,
   (x-(7/4))2 = -75/16

We'll refer to this Equation as  Eq. #3.4.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x-(7/4))2   is
   (x-(7/4))2/2 =
  (x-(7/4))1 =
   x-(7/4)

Now, applying the Square Root Principle to  Eq. #3.4.1  we get:
   x-(7/4) = -75/16

Add  7/4  to both sides to obtain:
   x = 7/4 + √ -75/16
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Since a square root has two values, one positive and the other negative
   x2 - (7/2)x + (31/4) = 0
   has two solutions:
  x = 7/4 + √ 75/16  i 
   or
  x = 7/4 - √ 75/16  i 

Note that  √ 75/16 can be written as
   75  / √ 16   which is  75  / 4

Solve Quadratic Equation using the Quadratic Formula

 3.5     Solving    4x2-14x+31 = 0 by the Quadratic Formula .According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A
  In our case,  A   =     4
                      B   =   -14
                      C   =   31
Accordingly,  B2  -  4AC   =
                     196 - 496 =
                     -300
Applying the quadratic formula :

               14 ± √ -300
   x  =    ——————
                      8
In the set of real numbers, negative numbers do not have square roots. A new set of numbers, called complex, was invented so that negative numbers would have a square root. These numbers are written  (a+b*i) 

Both   i   and   -i   are the square roots of minus 1

Accordingly, -300  = 
                    √ 300 • (-1)  =
                    √ 300  • √ -1   =
                    ±  √ 300  • i

Can  √ 300 be simplified ?

Yes!   The prime factorization of  300   is
   2•2•3•5•5 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

300   =  √ 2•2•3•5•5   =2•5•√ 3   =
                ±  10 • √ 3

  √ 3   , rounded to 4 decimal digits, is   1.7321
 So now we are looking at:
           x  =  ( 14 ± 10 •  1.732 i ) / 8

Two imaginary solutions :

 x =(14+√-300)/8=(7+5i 3 )/4= 1.7500+2.1651i
  or: 
 x =(14-√-300)/8=(7-5i 3 )/4= 1.7500-2.1651i

Solving a Single Variable Equation :

 3.6      Solve  :    x+2 = 0 Subtract  2  from both sides of the equation : 
 
                     x = -2

Three solutions were found :

  1.  x = -2
  2.  x =(14-√-300)/8=(7-5i 3 )/4= 1.7500-2.1651i
  3.  x =(14+√-300)/8=(7+5i 3 )/4= 1.7500+2.1651i